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Abstract-It is a well known fact [l] that the variational theorem of minimum entropy production does not 
apply for non-stationary processes and/or in the presence of convection. For such processes a new 
thermodynamic functional of the Hamiltonian type replacing the functional of entropy production is given in 
this work. The stationarity conditions of this functional are the hyperbolic equations of coupled energy and 
mass transport which take into account the effects of non-stationarity and macroscopic motion in 
mechanical equilibrium. The engineering significance of the variational principle given consists in finding 

approximate fields of temperature and concentrations with the help of direct variational methods. 

NOMENCLATURE 

I 
ran-l, coefficients of equations (40), (41) 

and (43) found for ith solution of equation 
(33) when D = Di; 
thermostatic matrix of capacities, 
equations (19), (20) and (26); 
constant velocity of wave propagation; 

heat capacity; 

thermostatic coefficient for pure 

thermostatic coefficients called capacities, 
defined by (19) and (20); 

co1 (m,, m,, . . , m,_ 1), column vector of 
coefficients m,,m, ,..., m,_,; 

04’ thermal diffusivity of pure heat transfer 
process ; 

Q,t4,.,.rDn-1, Eigendiffusivities, the roots of 

. 

characteristic equation; 
=diag (Do,D1,..., D, _ 1 ), diagonal matrix of 
Eigendiffusivities ; 
diameter of solid particle; 
diag (1, 1,. . . , 1) unitary matrix; 
autonomous part of Lagrangian, equations 

(8) and (9); 
gravity acceleration; 
enthalpy per mass unit of mixture; 
total entropy production functional and its 
four-dimensional counterpart, equations 
(4) and (6), respectively; 
heat flux vector; 
. , k,, undetermined coefficients of equation 
(12); 
thermal conductivity, k, = LqT2; 

4, 

L, 
M, 

I m, 

ms, 
p, 

p, 

QY 

r, 

s, 
s, 
T, 
TO, 

4 
V, 
V, 

XS, 
Y> 
z, 

Onsager’s coefficient for pure heat 
transfer ; 

= :L+ 

matrix of Onsager’s coefficients ; 
= m , m’,...,m”-’ 1, principal matrix of 
Eigenvalue problem; 
= col(mb,. . . , mi_ i), column vector of the 
ith solution of equation (33) for D = Di; 
mass of solid sphere ; 
normal transfer potential, equations (30) 
and (31); 
= col(PO, P', . . . ) P"- I), column vector of 
the normal transfer potentials found for 
the Eigendiffusivities D,, D,, . . . , On_ 1, 
respectively; 

col[T-’ - Tel,..., &-l/T) - (pm.-IO/ 
T,)], column vector of the original transfer 
potential increments ; 
radius vector with the co-ordinates x, y 
and z; 
action functional ; 
entropy of mass unit of mixture; 
absolute temperature; 
constant reference temperature, e.g. 
temperature at infinity; 
time; 
volume; 
u,, u,,, vz, constant vector of barycentric 
velocity; 
Cartesian co-ordinate (x, y or z); 
mass fraction; 
vertical co-ordinate. 

Greek symbols 

A, increment: e.g. AT-’ = T-’ - T;’ etc. 

6, variation ; 

P> density of mixture; 
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P> chemical potential of the component k : 

ik, h, - pk ; 

L dynamic viscosity of fluid ; 

Tq’ relaxation time in pure heat transfer process ; 

;; 
four-dimensional volume, dQ = dx dJ d: dr ; 
non-autonomous part of Lagrangian ; 

V’. Laplace operator. 

Superscripts 

T. transpose matrix: 

- 1. reverse matrix. 

Subscripts 

i. k, components i and k; 

4 last component; 

0, reference state ; 

q> heat; 

.‘, number of Cartesian co-ordinate. 

I. lNTRODUCTlON 

IRRESWTIVE of the vast number of the searches for 

variational principles of the classical type (see e.g. the 
review by Finlayson and Striven [2]) suitable classical 

functionals have so far not been obtained, which would 
lead to the partial differential equations describing the 

coupled processes of non-stationary energy and mass 
transport in the presence of macroscopic motion. 

Some investigators, e.g. Yourgrau and Mandelstam 
[3], claim that such functionals probably do not exist 

and that only the equations of thermodynamically 

reversible phenomena can be derived from the sta- 

tionarity principles of the exact functionals. The 

recognized method of the local potential due to 
Glansdorff and Prigogine [4] does not introduce the 

functional in the classical meaning e.g. such as that of 

Hamilton’s type. The advantages and shortcomings of 
this approach as well as of other ‘restricted’ variational 

methods are not analysed in this study; see, however, 

Finlayson and Striven [2]. 

Vujanovic, in his series, see e.g. [5,6], was able to 

show that some variational formulation exists, at least 

for the hyperbolic equations of change describing heat 
conduction and fluid flow, this formulation being 
possible due to the presence of a non-autonomous 
term, exp(t/r,) in the action functionals. The role of 

such terms was systematically analysed by the present 
author in [7,8] where the various forms of the 
hyperbolic equations of change were also considered, 
depending on the time space transformations applied, 
in the systems with moving media. Furthermore, 
Lebon [9] has proved that an interesting formulation 
can also be obtained (for the pure heat transfer case, 
linear or non-linear) which leads to the set of con- 
servation and phenomenological equations. In con- 
nection with the above findings it should be clearly 

pointed out that, as shown by Finlayson [lo]. the 
crucial test for deriving a variational principle as- 
sociated to a set of differential equations is the 
existence of a symmetric FrCchet derivative. Clearly 
the class of equations considered by Vujanovic and 

Lebon, as well as those in the prrsenr work belong it) 
this category. 

Also the existence of Prigogine’s principle ot mm- 

imum entropy production [I]* invohing a class~call\ 

defined functional, appears to contradict the <I~I~I~~II 

of the non-existence of variational principles ~)fclas~~- 

cal type for irreversible processes. if the assumption of 
the constancy of phenomenologlcal coefficients $1. 
corporated in this principle is accepted Thus princip!e. 

however, is valid only for time-dependent praccsces. 

i.e. when relaxation effects are not mvolved ,ind fi~c 
macroscopic motion is excluded. Despite a number .>I 

the restrictions the principle B\ &;t ions~der-ahl~~ 

theoretical significance as a general \,lrlation:1! prlrE 

ciple of classical type which accounts for mt~tiial 

coupling of irreversible phenomena. Also of ~mpor- 

tance are practical aspects of the principle as 11 :i 

helpful in the formulation of a suitable eupresslctri ji!r 

the local potentials [4] which arc used to find !!IC 

solutions of the transport equations III the %.;t~ $:I’ 

variable phenomenological coefticientb In ti:i, ioi;- 

nection attempts to find a claharcal :ypc \ar:at~n;:~ 

principle which would, to some extent at least. gtincrai- 

ize this (Prigogine’s) principle. are still attractix”r 
This study will be concerned with non-stationary 

irreversible processes of coupled+ energy ~ti ZI~:LZ~. 
transfer with convection occurring under mcchanlc:d 
equilibrium conditions. The pure heat transfer CLN 

will be analysed first and experience gained from ii UJ!! 

be used to investigate the simultaneous energ) ,md 
mass transfer. A variational principle wili by 101 

mulated tihich may be regarded as an analogue ,!f {!I!: 

principle of minimum entropy produ&on fa *v :-)r>i~- 
stationary processes with macr(rscopIL matron. .\i- 
though the principle itself will not be related it’ rhc: 
minimum of entropy production, hoKct.er, ;I+ MC: >h,~ii 

show, it will resolve itself to Prigngine’s principle H hzn 

the macroscopic motion and relaxation effects :Lrc 
disregarded. The fact that these two effects i$rlI bl: 

taken into account will permii the nevl prmcipic I<* 

describe a larger number of fundamental phenomena 

than the principle of minimum entr\)py productll)n 
usually does. This fact is especially Importan: for the 
heat and mass transfer specialists bvhen investigating 
the solutions of the heat and mass transfer eyua&nx in 

the case of the difficult, highly non-~tat~onar). pi’s’- 

cesses. IJsing the principle adianccd here W& ~(u- 
lutions can be effectively obtained wirth the help rjf 
direct variational methods (see [ 1 I, 1 -I] and Stxiic~n 6 I. 
The concept of so-called normal transfer potentrai>. 
Section 4, should be useful for engineers investi@ing 
the solutions of heat and mass transfer equalion> of 
many technical processes. These facts will 111 ~c)me 
extent compensate for the shortcomings of the mr:- 

thod which result from the fact. that the Prigclglnc 
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assumption of constancy of phenomenological coef- 
ficients will affect, in the present case, not only 
Onsager’s coefficients, but also the thermostatic coef- 
ficients called capacities, see equations (3), (19), (20) 
and (25) in this paper. The capacities appear in the 
non-dissipative terms of the process equations which 
are not present in Prigogine’s principle since it deals 
with the purely dissipative cases [4,11]. Investigations 
into a possible formulation of variational theorems 
which would abandon the assumption mentioned 
should be subject of a further effort. 

2. CONSTRUCTION OF VARIATIONAL PRINCIPLE 
FOR PURE HEAT TRANSFER 

To introduce the reader to the formulation of 
variational principle for non-stationary processes with 
macroscopic motion the pure heat transfer in a moving 
solid is analysed first. A counterpart of the principle of 
minimum entropy production is then relatively easy to 
obtain and the origin of functionals presented in this 
work can be explained clearly. This case serves as an 
excellent introduction for the much more difficult case 
of coupled processes, Sections 3-5. 

The hyperbolic equation describing pure heat trans- 
fer in a moving rigid solid is obtained directly from the 
Maxwell phenomenological equation [9] (containing 
relaxation term for heat flux) and the energy con- 
servation law. For the Galillean frames the result is* 

dh 2 

pz = -div(L,grad T-l) - pr,g (1) 

where the operators d/dt and d2/dt2 are the first and 
the second substantial derivatives defined respectively 
as 

u1 “1 

-------~ 

dt 
at + vgrad T-l; 

d2T-’ d dT-’ 

--=-i-J- 

a2T-l 

dt2 dt dt at2 

(24 

+ Zvgradq + v grad(v grad(v grad T- ‘). 

W) 

These definitions should be always remembered when 
reading this text. The last term on the RHS ofequation 
(1) contains the relaxation time tq = D,/ci so it 
describes thermal relaxation effects. This time as well 
as the wave propagation velocity, c,,, are assumed as 
constants. 

To investigate the variational principle for equation 
(1) one must express enthalpy as a function of definite 
transfer potential e.g. reciprocity of temperature. Also 

* The equation (1) is the result ofcombining: &grad T-l 
= J, + ~~ dJ,/dt with pdh/dt = -div J, which are 
respectively the Galillean form of Maxwell equation and 
energy conservation equation for moving solid. 

the relaxation term should utilize with this variable. 
For this purpose we transform equation (1) to the form 
containing T’ as the only thermodynamic variable 
and we take the thermostatic coefficient cq = 
(dh/dT- 1)0 as a constant. The Onsager coefficient L4 is 
subjected to the same assumption (Prigogine’s 
assumption). With the above assumptions we obtain 
from equation (1) the linear equation 

pc dT-’ 
4dt+ Lq V’T-‘- (3) 

We shall show that the variational principle of the 
classical type exists for equation (3) replacing the 
variational principle of minimum entropy production, 
and reducing to the latter in the time-independent case 
and when the system is at rest. 

We will start our reasoning from this latter case for 
which Prigogine’s principle holds. We assume con- 
stant temperature at the boundary of the system. Then 
minimization of the entropy production functional 

I= 
sss 

L&grad T-1)2 dx dy dz (4) 

gives, when 4 = constant, the Euler equation 

L,V2(T-‘) = 0 (5) 

which is, under the same assumption, the equation for 
stationary heat transfer. 

In order to find the generalized form offunctional (4) 
one may note that using some four-dimensional 
extension of Lagrangian appearing in equation (4) i.e. 
considering the functional 

i= (grad T-1)2 

1 dT-’ ’ 
-17 

( !I dx dy dz dt (6) 
co 

the Euler equation takes the form 

L 
4 

which is the last term of equation (3). Note that the 
substantial derivative definitions, equations (2), were 
used when passing from equation (6) to equation (7). 
However, equation (7) is still not yet the desired result 
because it does not describe such non-dissipative 
phenomena as equations (1) and (3). To take these 
phenomena into account we assume-and this is a 
crucial assumption for the mathematical technique 
used here-that Lagrangian leading to equation (3) 
can be obtained from Lagrangian of equation (6) after 
multiplying the last one by some temporary unde- 
termined function &x, y,z, t) which may depend ex- 
clusively on the spatial co-ordinates and time. It means 
that we will consider a non-autonomous functional of 
the general structure 
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x &x,y,z,t)dR (8) 

where dQ = dx dy dz dt and in our case 

one finds* 

ri) = exp( - pc,citL;. ’ ) = exp(c$D; ’ ). (15) 

Thus after using equations (8 ), (9) and ( 15) one obtains 

the functional 

Our purpose will be to determine function b, such that 
equation (3) will be the Euler equation for the func- 

tional defined by equations (8) and (9). Since equation 
(3) is from its physical nature autonomous (it does not 

contain the independent variables explicitly) we must 

examine which conditions must be met so that the 
Euler equation will not explicitly contain the variables 

x, r, z and t. Using again the substantial derivative 
definitions, equations (2) it can be verified that the 

general form of Euler equation for functional (8) can be 

written as 

+ 
S=3 

c 
s=l 

a 
(7.x, 

i(F4) 
iT-' 

or after using the differentiation formula for the 

product F4 and then dividing both sides by C#I 

7’3 

+c 
S=l 

i d In 4 

+ --ciY 

Equation (11) will not explicitly contain independent 

variables x. J, z and t if the function In[$(x, J’, z and t)] 
will be linear, that is when 

4 = exp(k,t + k,s + k,. + kg) (12) 

where k,, k,, k, and k, are constants which will be 
determined after consideration of equations (3). (9), 

(11) and (12). 
Using equations (9) and (12) into equation (11) one 

obtains 

Hence, after comparing equations (3) and (13) one 
finds 

k = pc6c, f r ’ 
k, = k,> = k, = 0 (14) 

and after substituting these relations into equation (12) 

replacing the functional entropy production, see equa- 
tion (4). for the process of pure heat transfer in the 

presence of macroscopic motion and relaxation effects. 

It may be easy to verify that the Euler equation for this 

functional becomes the hyperbolic equation (3) upon 

simplification of the exponential terms. One can 

additionally note that if the terms containing time 

explicitly are disregarded and the solid is at rest (v = 0) 

then the functional S simplifies to the functional (4) of 

entropy production and equation (3) reduces to the 

stationary form equation (5). Thus we have obtained 

the correct variational principle, under the same sort of 
assumptions as in Prigogine’s theorem [1,4]. 

It is necessary to remember that as pointed out in 

equation (15) the term pcqL/I 1 in the exponential term 

of equation (15) is precisely equal to the negative 

reciprocal of heat diffusivity D,, detined in usual 

manner. It will be of some importance to extend 
equation (1.5) to the case of coupled heat and mass 

transfer processes. 

3. F:QCATIO\S DESCRIBiN(; SIMI.LTAIVEOI!S 
HEAT .4m 344SS TR~USFER 

Let us consider an isotroptc mixture of YI com- 

ponents k(k = 1,2.. ,I?) under mechanical equilib- 
rium conditions, in which coupled heat and mass 

transfer occurs. To make the formulae obtained shor- 
ter, let us consider the case of no external forces which 
is equivalent to isobaric condition of the process. The 

generalization that accounts for the external forces 

deriving from potential is self-evident. However for 

more complicated situations e.g. in case of Lorentz 
forces the generalization of the variational principle 
presented here is far from being a trivial matter. The 
constant velocity of motion of the system. v. is defined 

in the usual manner as the barycentric velocity [i]. 
Additionally, the assumption mentioned in Section 1 
will be made: namely: the phenomenological coef- 
ficients that are elements of Onsager’s matrix as well as 
thermostatic coefficients called capacities, being de- 

fined below. are taken as constants 
The definition and properties of the capacities result 

from the formula for the differential of the specific 

entropy of the system : 

* II IS only Ibr Galillean frames that L, = ik, = kr = 0 and 
that the function d, is the same in moving and ?tationarq 
media e.g. in Lorentz (relativistic) frames k, # k, i ki # 0, 
i.e. ki bill not vanish, and the scalar product VT will appear in 
4. However we will not consider this problem in detail, see 

PT 
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n-1 

ds = T-’ dh - C [(pk - p.)T-‘]dy, (17) 
k=l 

and from the formula for a Legendre transformation of 
function s determined by equation (17), i.e. from the 
relation 

n-1 

Cd”) = hdT-’ + c Ytd[bn - Pk)T-‘].(18) 
k=l 

The capacities are defined as partial derivatives of 
enthalpy h and concentrations y, with respect to the 
variables T- ’ and [(p, - pk)T- ‘1, respectively. In 
terms of the capacities the differentials dh and dyi are 
described as follows : 

n-1 

dh = c,,dT-’ - 1 C4kd[(pk-/&)T-1] (19) 
1 

n-1 

dyi = c,dT-’ - c cikd[(pk-y,)T-l]. (20) 
1 

It follows from equation (18) that the capacities result 
as the second partial derivatives of the function pJT 
with respect to the variables T- ’ and (# - pk)/T, that 
is, they obey the symmetry conditions ckq = C,,k and Cik 

=Cki. 

Our task will be to find the variational principle 
leading to the following system of hyperbolic equa- 
tions [8] describing, in Galillean frames, the coupled 
heat and mass transfer with macroscopic motion and 
relaxation : 

0=p;+L,,k2T-’ -g) 
0 

n-l 

- 1 L,k{v2[(Pk - PJT-‘I 
k=l 

_ d2C@k - PAT- ‘I 
c; dt2 i 

0=,$+Liq(V2T~‘-~> 
0 

- 
l$ Lik k2[(8k - /4T-‘l 

(21) 

(22) 

For the system at rest these equations contain 
d’Alamberts operators replacing the commonly used 
Laplace operators because relaxation phenomena are 
not neglected in our description. In equations (21) and 
(22) as well as in further analysis it is assumed that the 
velocity of wave propagation, co, is a constant inde- 
pendent of time and location in the system. 

For the purpose of operating with a definite set of 
mutually independent variables the enthalpy and 
concentration differentials should be expressed in 
terms of differentials of the transfer potentials, T-l, 

[(pl - pL,) T-l], . . . etc. Using equations (19) and (20) 
in equations (21) and (22) one can obtain: 

+ L,J2T-’ - 1 L,,V2[(pk - pL,)T-‘1 
k=l 

L d2T-’ “-’ Lqk d[(Pk - PAT-‘I -“-+CT 
4 dt2 

o 
k=1 Co dt = 

(23) 
p 

n-1 

+ L,V’T-’ - 1 LikV2[(pk - p,)T-‘1 
k=l 

I 5 d2[(Pk - &)T-‘1 = o, 

L. d2T-’ w 

c; dt2 Ci dt2 
(24) 

The two symmetric matrices are associated with 
equations (23) and (24), namely the positive defined 
matrix of Onsager 

L=k+ ;!I,, 111 ;_i; (25) 

and the ‘thermostatic’ matrix of capacities 

One may note that the elements of matrix C are 
precisely those which appear in fluctuation theory for 
quadratic approximation of the entropy excess AStotal 
of a large closed non-equilibrium system having a 
uniform temperature To and chemical potentials pko 
nearly everywhere except for the unit mass part where 
the temperature is T and chemical potentials are pk. 
Indeed, one has in our isobaric case 

AS,,,,, = AS - $!! + “il (&, - pno)T, ’ Ayk 
0 k=l 

n-1 

z ) AT-’ Ah - 1 A[(/L~ - p,)T-‘]Ayk 
k=l 

(27) 

after Taylor expansion of As with accuracy to the 
second order terms. Equivalently 

AStotal = $ c,JAT - 1)2 
i 
n-1 

- 2 c ‘qk AT-’ A&k - AT-‘I 

k=, 

n-l n-1 

+ C C cik AC(Pk - &I T-‘1 
i=l k=l 

x ARA-P.)T-‘I . (28) 
H.M.T. 23/9--s 



This expression is a consequence of the local equilib- 

rium hypothesis of isobaric macroscopic system, see 
[1,4]. For a stable system C is a negative definite 
matrix at least in close to equilibrium situations. 

However the nature of the transfer equations which 

involve relaxation terms indicates that the system can 

be far from equilibrium and, then, it can be questioned 

if C is always negative. Although C (or its reverse) was 

taken in [4] to be always negative it should be 
underlined that this negativity condition is not nec- 

essary for our purposes. Namely. the construction of 
the variational principle can be accomplished also 
when C is not ofdetinite sign. It will be shown that the 

only requirement is that at least one of the two 

matrices, L or C, has to be of definite sign. 

4. AN EIGIX~~ALUE PROBLEM SIMPLlFYlNG THE 
FfNDING OF VARIATIONAL PRINCIP1.E 

We shall show by extension of reasoning presented 

in Section 2, that the variational principle exists 
leading to equations (23) and (24). At first glance, 

however, it seems to be extremely diffrcuft to formulate 

such a principle because of the complexity of the 

process equations. Some introductory search is there- 

fore required, this is presented in this section. 
The basic concept of the present technique will 

exploit the notion that the finding of variational 

formulation will be much more easy if the set of 
equations (23) and (24) is broken down to the eyuiva- 
lent uncoupled set of equations operating with new 

transfer potentials for which both symmetric matrices 

C and L will become simultaneously diagonal. Al- 

though it is commonly known that any symmetric 

quadratic matrix can be broken down to the diagonal 
form by orthogonal transformations it is not in- 

tuitively obvious that the transformation exists which 

makes two, symmetric matrices both diagonal. 

In analytical dynamics theory, cf [13], and es- 
pecially in the theory of vibrations this fact is, however, 

well known since it is connected with the transfor- 
mation of the non-Cartesian form of kinetic energy 
matrix and potential energy matrix to the two dia- 

gonal matrices simultaneously after introducing so 
called normal (or principal) co-ordinates. It is always 
possible to accomplish it if at last one of the two 

matrices considered is of definite sign [13]. It is also 

known that in such a case the transformation which 

leads to normal co-ordinates is always a real one 

[13,14] for the two non-singular symmetric matrices. 
Now we will apply the above concept to transform 

equations (23) and (24) an equivalent ford from 

which the variational principle will result immediately, 

on the basis of the variational results of Section 2. Let 
us supsose that we have muiti~iied each of relations, 
equations (23) and (24) by some temporary- unde- 

termined multipliers m,. l)tlr m,_ 1 and then we 
added the resulting equations together. The equation 

-. __ 
* This form will be uncoupled with respect to the new 

dependent variables. i.e. potentials P’, defined later 

+ ...ckn_tmk... + c’,._~~_~ m,_,)- 
dr -- 

f (L,,mo i- L,,m, i- ...Lliqmk...L,_l.,m,_l) 

where, for brevity, the substantial derivative operators 
d/dt and d2/dt2 are again introduced. Considering 

sequentially the coefficients of the terms containing 

d7.m’ 
.~ v:T-_~!__ d?.:’ 

dt f 2 ” 
L’O 

&--’ 

then the terms containing 

d[(pc,-iG’T1 vz -----. 
dt 

d2[(p,-~ttT-L1 _ ___~__ 
c:, dt2 

etc. one can observe that the equation (29) will take the 

simple ‘canonical’ form 

__ =o 130) 

where 

and [the symmetry of matrices has been exploited in 

equations (32) and (33)] 

a0 = cqqmO + cqImr + . . c@mI; + . . . ten- If%- 1 

a, = clqmo + cllml.. .clkmk + ~,~-~rn~_~ 

a,_, = c,_i,qmo + c,_l,lml . . . 

c,_l,~mL...~,-l.n-lmn-l (32) 

only when a constant D exists, appearing in equations 
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(30) and (33), that the multipliers m,, m,, . . . , m,_ I, 
meet the equations 

= - pDc,,m, + cqlml . . c&n,+ + can_ lm,_ 1) 

Ll,mo + Lllml + ,..L,kmk + se.Lin_lmln_l 

= -pD(clqmo + cllml + . ..clkmk f cln_lmn_l) 

L,_,.,m, + L,_l,lml + ...L,_,%kmk... 

= -pDhl,mo + c,-l.lmt 

%-l,kmk + Cn-l,n-lmn-l f . (33) 

The quantity P obeying equations (30) and (31) is 
expressed in terms of the excesses of original transfer 
potentials, with regard to arbitrary reference state, as 
e.g. constant state at infinity, P will be called normal 
transfer potential, since, as it will be shown later, n such 
independent potentials Pi will exist each of which obey 
the simple separable structure ofequation (30). We will 
not characterize the potential P extensively since they 
have in our analysis only temporary, significance, and 
we will return finally to original potentials l/T, 

(K--P,YT . . . . etc. 
Equations (33) will be consistent only then if the 

constant D having the dimension of diffusivity, is the 
root of the characteristic equation : 

det(L + DpC) = 0. (34) 

This is the so called general Eigenvalue problem for the 
pencil of matrices Land ( - pC) known in algebra [ 141. 
The roots of equation (34) DoDl. ..D,_, are Eigen- 
values or characteristic roots of the pencil of matrices 
mentioned. Since matrices L and (- pC) are both 
symmetric, the characteristic roots, i.e. quantities Do, 
D 1,. . . , D,_ 1, are all real numbers which are all positive 
when C<O and L>O, see [14,13]. 

Because of these properties of the roots, Do, D,, . . . , 
D,, _ i, and their dimensions of diffusivity we will term 
them as ‘Eigendiffusivities’. The most important physi- 
cal property of the Eigendiffusivities I),, . . ., Dn_l 
results from the invariancy of characteristic equation 
(34). Any non-singular linear transformation of the 
original transfer potentials, described by the inde- 
pendent equations each of the type of equation (31), 
transforms the set, equations (23) and (24), into the 
new set with new coefficients which are the elements of 
the new matrices L, and C,. For these new matrices 
the characteristic equation 

det(L, + DpCI) = 0 (35) 

has the same characteristic roots as equation (34). 
Thus, the Eigendiffusivities are physical quantities 
~de~ndent of therm~ynamic variables used in pro- 
cess description. 

For the special case of pure heat transfer equation 
(34) reduces to 

Lq -I- D, PC, = 0 (36) 

or since cs = -C,Tg and L,Tg = k,, the thermal 
condu~ivity, to 

Dq =& 
P 

(37) 

in agr~ment with the common definition of heat 
diffusivity. 

After solving equation (34) the Eigendiffusivities Do, 
D,, _ _ . , D,_ 1 become known. For any value of Di, i =O, 
I , . . . , n - 1, one can now determine numerical values of 
coefficients ma, mf, . . . , mi-, andab,af,...,~i_~ from 
equations (33) and (32), respectively, provided that for 
each index i (i=O, 1, . . . , n- 1) there is defined one 
additional equation interconn~ting mf,, mi,, . . . , mi- 1 

which is called the normalizing condition. The reason 
for normalization is that equation (33) is homo- 
geneous with respect to mo, . .., m, and without 
nor~l~ation only ratios between coefficients mb, . . . , 
mi, mk_, would be determined. (Without normali- 
zation, the quantities us, nf, . . , ui_ 1 and Pi would be 
determined with the accuracy to the constant multi- 
pliers only.) 

Normalization makes n solutions of equation (33) 
synonymous for mb, . . . , mr-, and consequently de- 
fines synonymously n normal potentials Pi each of 
them obeying equation (30). Note that normalization 
does not influence the values of Eigendiffusivities D,. 

Although normalization is only a mathematical 
procedure, and it may be accomplished in many ways, 
it is useful to normalize coefficients mb, . . , mr- Ir in 
some special manner. Here the normalization is so 
accomplished that the n column vectors mi = col(mb, 
ml;, . . . . ml_ ,) obey n relations of the form: 

(m’)TCmi= -1; i=O,l,_.., n-l. (38) 

Since the vectors mi and mj for two different Eigen- 
values Di # Dj are orthogonal with respect to each of 
the two matrices (--PC) and L, [14], i.e. 

(mi)TCmj =: (mi)TLmj = 0; i # j (39) 

then, after use of normal transfer potentials and 
normalization the matrix, C transforms into a negative 
unitary matrix, diag (- 1, - 1, - 1, . . , - 1), and the 
matrix L into diagonal matrix, diag (pD,, pD,, pD,, 
. . , pD,_,). This results from the basic properties of 
the general Eigenvalue problem [ 141 as outlined in the 
Appendix. 

Solving the set of equations each the type of 
equation (33), n times, for D = Do, D = D,, .,., D 
= DE_ 1 with the use of n normalization conditions,* 
equation (38), we obtain the definite set of vectors mi 
with the co-ordinates m& rni, . . . , mi_,. Then, the 
coefficients a;, uf, . . . , at_, of the equation (31) are 

n-i 
* An equivalent normalization condition - x Pf = 

QTCQ might be used where Q = CO~(AT-‘,~A(~, - 
Y&-’ .). It is indicated by equation (A.6) in the Appendix. 



found using equation (32) or equivalently, the matrix 
formula : 

Thus we know the coefficients of equation (3 I ) for D 
= DC, and we can write n independent definitions for Pi 
(i =Q, 1, . , n - 1). Using these definitions in the rt 
canonical equations [equation (30) for D = Di and P 
= Pi] we have transformed the set of n original 
relationships, equations (23) and (24), into the equiva- 
lent set of n following equations. 

i-=O,l,...,t1-I (41) 

each having the simple structure of equlttion (30). 
From this structure it will be very easy to formulate the 
variational principle on the basis of the results of 
Section 2. 

5. THE VARIATIONAL PRINCIPLE FOR COUPLEI) 
HEAT AND MASS TRANSFER PROCESSES 

Comparison of equations (3), (16) and (30) verifies the 
relevant functional for the processes of simultaneous 
heat and mass transfer described by normal potentials 
PO; P’, ps-’ : 

since the condition 6s = 0 leads to the set of re- 
lationships given by equation (30) for P = PO, P’, , 
Pnel, Returning now in integral (42) to the original 
transfer potentials, T- i, (p, - /(I )T -- ‘, etc. we obtain 
with the help of equation (31) for P = Pi and uk = & 
the following functional : 

(43) 

the stationarity c~)nditions of which are equation (41 J 
or equations (23) and (24) for the transfer potentials 
constant at the boundaries of Q. 

All coefficients of this functional. i.e. ui and Di of 
equations (40) and (34) respectively, are known as they 
were obtained* from the elements of the two basic 
thermodynamic matrices, the thermostatic matrix C, 
equation (26), and the kinetic (Onsager’s) matrix, 
equation (25). Thus we have obtained a well-defined 
classical functional leading to the set of equations 
describing non-stationary, coupled processes of energy 
and mass transfer. 

If in the integral, equation (431, the terms with time 
derivatives and the exponential terms are disregarded, 
i.e. if the non-stationarity and convection effects are 
neglected, then in view of relations, equation (31) and 
equation (A.5), in the Appendix, the product of the 
total entropy source and the constant time interval At 
is obtained. The total entropy produced is then 
represented by S and the stationarity conditions, 6s 
= 0, leads in such a case to the conclusion that, at the 
steady-state, the real spatial distribution of the transfer 
potential gradients makes the entropy source both 
stationary and minimal [t,4]. Euler’s equations are 
then the classical equations of change taken for time- 
independent processes without convection. For that 
reason the stationarity principle 6s = 0 for the func- 
tional S defined by equation (43) replaces the 
Prigogine’s variational principle of the minimum 
entropy source? in those cases when the time- 
dependent heat and mass transfer occurs in which all 
three transport mechanisms, viz. by convection, dif- 
fusion and relaxation are of importance. It should be 
emphasized that the result obtained does not lead to 
the conclusion about the minimum of entropy source 
in the non-stationary processes considered. 

* Remember that, in general, there is no explicit formula 
for the solution of every Eigenvalue problem. It is, however, 
possible to compute coefficients a: and D, in any concerete 
case in the manner described in Section 4. 

+ We consider here only the exact variational formulation 
exploiting the entropy production functional in stationary 
case and no other extremum formulations (related to this 
case) that can also be found in [4]. 
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The principle of stationarity of functional S pos- 
sesses all the advantages and shortcomings of 
Prigogine’s variational principle. This is a general 
principle which accounts for the effects of all the 
transport mechanisms. On the other hand the prin- 
ciple is valid when ever the assumption of the con- 
stancy of macroscopic coefficients applies. 

From the view point of heat and mass transfer 
specialists the practical usefulness of the variational 
principle given consists in finding approximate fields 
of temperature and chemical potentials (concentration 
fields can then be found) with the help of direct 
variational methods. As usual it is then assumed, that 
the solution ‘J- ‘(x, y, z, t), . . . , ( ptn - p1 )/T (x, y, z, t) etc. 
of the set of hyperbolic equations (23) and (24) may be 
represented everywhere by complete and linearly 
independent sets of functions* &(x, Y, z, t), 

C&(X, y, z, t), . . . etc. We write 

T’ = i &&x,y,z,t); 
I=i 

l&T -I = i cx~,~#~~~(x,y,z, t), . . . etc (44) 
1=1 

where the {&.I, {cQ}, . . . are the n set of parameters. We 
then introduce the approximations, equation (44), into 
the functional (43) and perform its minimization with 
respect to the parameters as in the Rayleigh-Ritz 
method [ll, 121. We obtain in this way the optimal 
values of parameters leading to approximate ex- 
pression for transfer potentials. The practical details of 
the above aspect of application will be the subject of a 
separate paper, where a computational sample of 
coefficients Di, aj and mj will also be given 

7. CONCLUSION AND SIGNIFICANCE 

Variational principles of a classical type known 
previously for macroscopic systems are valid separately 
for either reversible or irreversible phenomena [l, 31. 
For instant, the recognized least action principle [3] 
pertained to the first and the minimum entropy 
production principle, [l], to the second type of these 
phenomena. No classical type principles have been 
given for macroscopic processes in which the irrever- 
sible phenomena were accompanied by the reversible 
ones. Since in our real macroscopic world such parti- 
cular processes generally prevail, the practical value of 
the principles mentioned previously was restricted and 
non-classical approaches as in the local potential 
method [4] have been advanced. 

In this work a powerful method has been given for 
finding variational principles of classical type which 
apply to macroscopic processes with reversible and 
irreversible phenomena. This method leads to time- 
unsymmetrical and position-unsymmetrical Euler 
equations, due to the presence of non-autonomous 
exponential terms in the Lagrangian’s of the func- 

* Each of which satisfies separately the boundary 
conditions. 

tionals, equations (16) and (43). Such equations 
conserve the fundamental irreversibility property, na- 
mely; the change in time sign or spatial co-ordinate 
sign does not lead to unchanged process picture, this is 
not so in the reversible process case. 

To explain it more clearly let us consider the most 
simple example of the irreversible process when a solid 
sphere with mass m, and diameter d falls vertically in 
quiescent viscous gas and the motion is laminar. It is 
sufficient to consider here this simple problem and we 
refer the reader to the previous work (151 for a more 
detailed analysis and generalizasions. In the gas case 
the buoyancy and virtual mass effects can be neglected 
and the suitable functional is of the form: 

s ‘S 
s= (45) 

0 

since the condition &S = 0 leads to the wellknown 
equation of motion 

m,i+3@di+m,y=O (44) 

containing the Stokes expression for viscous force. The 
functional, equation (45), as well as the trajectory z(t) 
of equation (46) change with transformation t + -t 
because of the presence of the exponential term in 
equation (45) resulting in appearance of the Stokes 
term in equation (46). If, however, the viscosity 17 of the 
fluid approaches zero then the exponential term of 
equation (45) approaches unity and the functional S 
reduces to the well-known least action functional [3]. 
Consequently the Stokes term in equation (46) van- 
ishes and the trajectory of this equation does not 
change with t + -t as a trajectory of a microscopic 
world process. An analogue analysis is valid for the 
more complicated functionals (16) and (43) in Sections 
1 and 6. Thus, due to the presence of exponential term 
in the integrands of equations (16), (43) and (45) the 
variational principles were found for more general 
processes in which irreversible phenomena are accom- 
panied by reversible ones. The existence of the classical 
variational principles for such processes is of consider- 
able theoretical importance for the fundamentals of 
irreversible thermodynamics and transport pheno- 
mena sciences. 

From the view point of the heat and mass transfer 
specialists the practical value of this work should also 
be underlined. The functionals found make it possible 
to obtain the solutions of the transport equations by 
direct variational methods [l l] with considerable 
accuracy, even in the case of complex boundary 
conditions (see e.g. Section 6 and numerical examples 
in [5 and 7]). 
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:APPENDIY 

THE DIAGONALIZATIOY OF MATRICES AND 
QK~ADRATIC FORMS IN YORMAL COORDINATES I” 

Introducing vectors Q = col(T-’ -- r;‘, ({A, -- i(t)7 “r 

- (f’“O - plti)Tm’ ,.., )P = col(P”.P’...., P”-‘Iandmatrix 
M = [m”, m’. . m” ‘1 the column of vvhich are the vectors 
mi one can write equations (38) and (39) in a common form 

MTCM- ---E~diitg(-I,-I....,-li IA.1 I 

where E is unitary matrix. Also, since mi are solutions of 
equation (33) one has Lm’ = -- n,pCm’ and 

(m’)‘I.m’ = Dj(m’)‘( - pC)mJ 

hw i, ,, mm 0, 1.). . P! - I. (A.?) 

Hence, from the definition of M and using equations (A.1 ) and 
(A.?) 

MrLM =: ,)r’, = di;lg(pD,,.i,D,,....lJD,. r). (A.31 

One may see, that our ortonormahty conditions, equations 
(38) and (39) in the text, resulted in simultaneous transfor- 

mation of the two symmetric matrtceb C: and L mto the 
diagonal matrices, diag( -- I. - 1, ~ I) and diag(pD,,. 
I’D,. . /PI?,_,), respectively. We sh,tll shtlw that it ts 
associated with a diagonal form of the entropy production 
expressed in terms of potentials I” and also with the 
diagonalization of other quadratic forms of interest. Indeed, 
for the transformations Q ---t P. \ve h,tve. from equati<ms (3 I I 
and (371 for i-0. t... .rt--1 and from equation (A It flxr 
symmetric C 

P = (CM)‘Q = M”CQ :: 31 ‘Q. <:X.4, 

Hence Q =- -- MP and since M is independent of time and 
position and equation (A.3) holds. the local entropy. pm- 
duction written as 

transforms its follows 

ia ‘;i 
, , ( ./i s ( x* 

By the same reasoning with the help of equation (A.1 j one has 

Q7CQ = (-MP)‘C( -. ML’, 

./ ) 

Also 

Similarly for some four-dimensiomll counterpart of entropy 
production, i.e. for generalization of the integrand ofequation 
(6) in the multipotential case we ha\e 

We may see that basic bihnear forms appearing in this work 
diagonalize in the normal co-ordinates I”. This conclusion 
applied to the local entropy productnon bilinear form, 
equation (A.5). is used in Section 6 to show that the 
variational principle advanced here reduces to the rniIli~~urn 
entropy production principle for the stationary case of the 
system at rest. 

It may be also noted that the coeftiuients L(; appearmg in 
our functional, equation (43). are elements of the matrix 
(CM)‘. Since (CM)’ equals to M- ‘. cf. equation (A.1 ). the 
principal matrix of the Eigenvalue problem, M, is the only 
quantity that is necessary to find the coefficients n:. 
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LE PRINCIPE VARIATIONNEL REMPLACANT LE PRINCIPE DE 
PRODUCTION MINIMALE D’ENTROPIE POUR UN PROCESSUS 

INSTATIO~AIRE DE TRANSFERT DE CHALEUR ET DE MASSE AVEC 
MOUVEMENT CONVECTIF ET RELAXATION 

RCmn6-On sait [l] que le thtorime variationnel de la production minimale d’entropie ne s’applique pas 
aux mecanismes instationnaires en presence ou non de convection. Dans de tels cas une nouvelle 
fonctionnelle thermodynamique du type de Hamilton remplace la fonctionnelle de production d’entropie. 
Les conditions de stationnarite de cette fonctionnelle sont les equations hyperboliques du transport COUPE 

d'~nergieetdemassequiprennentencompteleseffetsdenonstationnaritt etdemouvemcntmacroscopique 
en equilibre mecanique. 

La consequence pratique du principe variationnel donne est de trouver des champs approchis de 
temperature et de concentration a l’aide des methodes variationnelles directes. 

ERSATZ DES PRINZIPS DER MINIMALEN ENTROPIEZUNAHME DURCH 
DAS VARIATIONSPRINZIP BE1 GEKOPPELTEM- INSTATIONAREN 

WARME- UND STOFFUBERGANG MIT KONVEKTIVER BEWEGUNG UND 
RELAXATION 

Zusemmenfassung-Es ist bekannt [l], daD das Variationstheorem der minimalen Entropiezunahme nicht 
fiir instationare Prozesse und/oder bei Auftreten von Konvektion angewendet werden kann. Fiir derartige 
Prozesse wird in dieser Arbeit ein neues the~~ynamisches Funktional vom Hamilton-TV angegeben, das 
das Funktional der Entropi~un~me ersetzt. Im stationaren Fail hat das Funktional die Form der 
hyperbolischen Gleichungen fiir gekoppelten Energie- und Massentransport, welche die Effekte der 
instationiiren und makroskopischen Bewegung bei mechanischem Gleichgewicht beriicksichtigen. Die 
praktische Bedeutung des angegebenen Variationsprinzips besteht darin, mittels direkter Variationsmetho- 

den Naherungslosungen fiir Temperatur- und Konzentrationsverteilung ermitteln zu konnen. 

MCIIOJIb30BAHHE BAPRAHHOHHOI0 IIPMHUHHA BMECTO IlPHHUHIlA 
MHHWMAJIbHOFO IIPMPOCTA 3HTPOIIHH AJIlr CBII3AHHbIX HECTAUROHAPHbIX 

HPOHECCOB TEIIJIO- H MACCOIIEPEHOCA HPH KOHBEKHMM I4 PEJlAKCAHHM 

Amio~aumi- XOpOmO H3BeCTH0, YTO Bap~U~OH~y~ TeOlXMy 0 M~HHMa~bHOM Rp0ii3BOfiCrBe 

3HTp0EIHH HeJtb3R ~C~Onb3OBaTb ,UJla OflH~H~~ H~Ta~~OHapH~X Ilp0UeccOB, eCJIS9 K TOMy xe WhieeT 

MeCTO KOHBeKI&iR. &In TaKHX llpOUeCCOB Bh4ecTO @yHKUKOHaJIa IlpOIDBOACTBa 3HTp0nHH B GaHHOii 

pa6oTe tI&WlJIWiWKX HOBblfi TepMOJ.WHaMH~eCKKk +yHKUHOHaJl ~aMKnbTOHOBCKOrO T&ina,CTaIUiOHap- 

HblMHycno~wrMHann ~0~0p0r0 RBIIRH)TCII rHnep60nHsecKaeypaaHeHHR B3a~MocB5i3aHHoronepeHoca 

3HeprHH U MaCCbl, yWTb,BalomHe !+@eKTbl HeCTaUBOHapHOCTU B MaKp0CKO,,HWCKOrO J,aHXeHHR "pH 

rbiexanmnecxoM paexoaecwi. 
IlpaicwecKan 3Hawht0cTb npennaraeMor0 sapriaurfomroro npwimmia saxnrosaercs B BOSMOx- 

HOCTH HaXO~eHHa ~p~n~c~H~X TeMUepaTypH~X U KOHUeHT~U~OHH~X IlOJleii np~Mb1~~ saprfa- 
UKOHH~M~ MeTOLIaMU. 


