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Abstract—It is a well known fact [ 1] that the variational theorem of minimum entropy production does not
apply for non-stationary processes and/or in the presence of convection. For such processes a new
thermodynamic functional of the Hamiltonian type replacing the functional of entropy production is given in
this work. The stationarity conditions of this functional are the hyperbolic equations of coupled energy and
mass transport which take into account the effects of non-stationarity and macroscopic motion in
mechanical equilibrium. The engineering significance of the variational principle given consists in finding
approximate fields of temperature and concentrations with the help of direct variational methods.

NOMENCLATURE
,a._,, coefficients of equations (40), (41)
and (43) found for ith solution of equation
(33) when D = D;;
thermostatic matrix of capacities,
equations (19), (20) and (26);
constant velocity of wave propagation;

Oh heat it
— | , heat capacity;
T ), € pacity

oh . )
(—:1') , thermostatic coefficient for pure
0T,

heat transfer; ¢, = C,T?;
thermostatic coefficients called capacities,
defined by (19) and (20);

col (mqy, my,...,m,_ ), column vector of

coefficients my,my,...,m

n—l;

D,,  thermal diffusivity of pure heat transfer
process;

Dy, D,,...,D,_, Eigendiffusivities, the roots of
characteristic equation;

b, =diag (D, Dy,..., D, ), diagonal matrix of
Eigendiffusivities;

d, diameter of solid particle;

E, diag (1,1,...,1) unitary matrix;

F autonomous part of Lagrangian, equations
(8) and (9);

g, gravity acceleration ;

h, enthalpy per mass unit of mixture;

LT, total entropy production functional and its
four-dimensional counterpart, equations
(4) and (6), respectively;

N heat flux vector;

k. ks, ..., k,, undetermined coefficients of equation
(12);

kg,  thermal conductivity, k, = L, T?;

L,,  Onsager’s coefficient for pure heat
transfer ;

L, = [L,], matrix of Onsager’s coefficients;

M, =[m°m',...,m"" '] principal matrix of
Eigenvalue problem;

m’, =col(m,...,m_,), column vector of the

ith solution of equation (33) for D = D;;
ms,  mass of solid sphere;

P, normal transfer potential, equations (30)
and (31);

P, =col(P% P!,..., P"~1), column vector of
the normal transfer potentials found for
the Eigendiffusivities Dy, D,,...,D,_,,
respectively;

Q col[T™' — Tg', (#aet/T) = (Hta-10/
T,)], column vector of the original transfer
potential increments;

r, radius vector with the co-ordinates x, y
and z;

S, action functional ;

s, entropy of mass unit of mixture;

T, absolute temperature;

T,, constant reference temperature, e.g.
temperature at infinity;

t, time;

v, volume;

v, Uy, Uy, U;, CONstant vector of barycentric
velocity ;

Xgy Cartesian co-ordinate (x,y or z);

v, mass fraction;

z, vertical co-ordinate.

Greek symbols
A, increment: eg. AT ! =T~ — T5! etc.
4, variation;
o, density of mixture;
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L, chemical potential of the component &

ﬂkv Hn — Mg

A, dynamic viscosity of fluid;

Ty relaxation time in pure heat transfer process;

Q, four-dimensional volume, dQ = dxdy dz dr;

o, non-autonomous part of Lagrangian
V2, Laplace operator.
Superscripts
T, transpose matrix;
—1, reverse matrix.
Subscripts
i,k,  components i and k;
n, last component ;
0, reference state;
d, heat;
5 number of Cartesian co-ordinate.

1. INTRODUCTION

IRRESPECTIVE of the vast number of the searches for
variational principles of the classical type (see e.g. the
review by Finlayson and Scriven [2]) suitable classical
functionals have so far not been obtained, which would
lead to the partial differential equations describing the
coupled processes of non-stationary energy and mass
transport in the presence of macroscopic motion.
Some investigators, ¢.g. Yourgrau and Mandelstam
[3], claim that such functionals probably do not exist
and that only the equations of thermodynamically
reversible phenomena can be derived from the sta-
tionarity principles of the exact functionals. The
recognized method of the local potential due to
Glansdorff and Prigogine [4] does not introduce the
functional in the classical meaning e.g. such as that of
Hamilton’s type. The advantages and shortcomings of
this approach as well as of other ‘restricted’ variational
methods are not analysed in this study; see, however,
Finlayson and Scriven [2].

Vujanovic, in his series, see e.g. [5,6], was able to
show that some variational formulation exists, at least
for the hyperbolic equations of change describing heat
conduction and fluid flow, this formulation being
possible due to the presence of a non-autonomous
term, exp(t/t,) in the action functionals. The role of
such terms was systematically analysed by the present
author in [7,8] where the various forms of the
hyperbolic equations of change were also considered,
depending on the time--space transformations applied,
in the systems with moving media. Furthermore,
Lebon [9] has proved that an interesting formulation
can also be obtained (for the pure heat transfer case,
linear or non-linear) which leads to the set of con-
servation and phenomenological equations. In con-
nection with the above findings it should be clearly
pointed out that, as shown by Finlayson [10], the
crucial test for deriving a variational principle as-
sociated to a set of differential equations is the
existence of a symmetric Fréchet derivative. Clearly
the class of equations considered by Vujanovic and
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Lebon, as well as those in the present work belong 1o
this category.

Also the existence of Prigogine’s principle of mun-
imum entropy production [{]* involving a classically
defined functional, appears to contradict the opinion
of the non-existence of variational principles of classi-
cal type for irreversible processes. if the assumption of
the constancy of phenomenological coefficients
corporated in this principle is accepted. This principle.
however, is valid only for time-dependent processes.
i.e. when relaxation effects are not involved und the
macroscopic motion is excluded. Despite a number of
the restrictions the principle s of considerable
theoretical significance as a general variational prin-
ciple of classical type which accounts for mutual
coupling of irreversible phenomena. Also of impor-
tance are practical aspects of the principle as it s
helpful in the formulation of a suitable expression for
the local potentials [4] which are used to find the
solutions of the transport equations in the case of
variable phenomenological coefficients. In this con-
nection attempts to find a classical type varational
principle which would, to some extent at least, general-
ize this (Prigogine’s) principle, are still attractive.

This study will be concerned with non-stationary
irreversible processes of coupled® energy and muss
transfer with convection occurring under mechanical
equilibrium conditions. The pure heat transfer case
will be analysed first and experience gained front it will
be used to investigate the simultaneous energy and
mass transfer. A variational principle will be for
mulated which may be regarded as an analogue of the
principle of minimum entropy production for non-
stationary processes with macroscopic motion. Al
though the principle itself will not be related to the
minimum of entropy production, however, as we shali
show, it will resolve itself to Prigogine’s principle when
the macroscopic motion and relaxation effects are
disregarded. The fact that these two effects will be
taken into account will permit the new principle to
describe a larger number of fundamental phenomena
than the principle of minimum entropy production
usually does. This fact is especially important for the
heat and mass transfer specialists when investigating
the solutions of the heat and mass transfer equaticns in
the case of the difficult, highly non-stationary, pro
cesses. Using the principle advanced here such «o-
lutions can be effectively obtained with the help of
direct variational methods (see [ 11, 12] and Section 6.
The concept of so-called normal transter potentials,
Section 4, should be useful for engineers investigating
the solutions of heat and mass transfer equations of
many technical processes. These facts will tv some
extent compensate for the shortcomings of the me-
thod which result from the fact. that the Prigogine

-

* For a special case of this principle, see equation {4) in this
paper.

+ The uncoupled processes have been analysed i | 7]
which may be treated as the first part of this work



The variational principle for heat and mass transfer

assumption of constancy of phenomenological coef-
ficients will affect, in the present case, not only
Onsager’s coefficients, but also the thermostatic coef-
ficients called capacities, see equations (3), (19), (20)
and (25) in this paper. The capacities appear in the
non-dissipative terms of the process equations which
are not present in Prigogine’s principle since it deals
with the purely dissipative cases [4, 11]. Investigations
into a possible formulation of variational theorems
which would abandon the assumption mentioned
should be subject of a further effort.

2. CONSTRUCTION OF VARIATIONAL PRINCIPLE
FOR PURE HEAT TRANSFER

To introduce the reader to the formulation of
variational principle for non-stationary processes with
macroscopic motion the pure heat transfer in a moving
solid is analysed first. A counterpart of the principle of
minimum entropy production is then relatively easy to
obtain and the origin of functionals presented in this
work can be explained clearly. This case serves as an
excellent introduction for the much more difficult case
of coupled processes, Sections 3-5.

The hyperbolic equation describing pure heat trans-
fer in a moving rigid solid is obtained directly from the
Maxwell phenomenological equation [9] (containing
relaxation term for heat flux) and the energy con-
servation law. For the Galillean frames the result is*

o - dh
v —div(L, grad T 1)_9%@ oy

where the operators d/dt and d?/dt? are the first and
the second substantial derivatives defined respectively
as

dr—' oT"!

= dT7;
P o + vgra

(2a)

a2 &\ a ) o
T~ 1
ot

T d (dT“)_ *T!

+ 2v grad + v grad(v grad(vgrad T~ !).

(2b)

These definitions should be always remembered when
reading this text. The last term on the RHS of equation
(1) contains the relaxation time 7, = D,/c§ so it
describes thermal relaxation effects. This time as well
as the wave propagation velocity, c,, are assumed as
constants.

To investigate the variational principle for equation
(1) one must express enthalpy as a function of definite
transfer potential e.g. reciprocity of temperature. Also

* The equation (1) s the result of combining: L, grad T~!
= J, + r,dJ,/dt with pdh/dt = —divJ, which are
respectively the Galillean form of Maxwell equation and
energy conservation equation for moving solid.
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the relaxation term should utilize with this variable.
For this purpose we transform equation (1) to the form
containing T~! as the only thermodynamic variable
and we take the thermostatic coefficient ¢, =
(dh/dT ~ '), as a constant. The Onsager coefficient L,is
subjected to the same assumption (Prigogine’s
assumption). With the above assumptions we obtain
from equation (1) the linear equation

47! T
L (V*T ! - = Q. 3
* < c%dzl) ®)

e,

We shall show that the variational principle of the
classical type exists for equation (3) replacing the
variational principle of minimum entropy production,
and reducing to the latter in the time-independent case
and when the system is at rest.

We will start our reasoning from this latter case for
which Prigogine’s principle holds. We assume con-
stant temperature at the boundary of the system. Then
minimization of the entropy production functional

1= ”fL,,(grad T2 dxdydz )

gives, when I, = constant, the Euler equation
LVX(T 1) =0 5)

which is, under the same assumption, the equation for
stationary heat transfer.

In order to find the generalized form of functional (4)
one may note that using some four-dimensional
extension of Lagrangian appearing in equation (4) i.e.
considering the functional

- [[fofmr

1 /dT-1\?
-5 dxdydzdt (6)

cp\ dt

the Euler equation takes the form

¢ dr?

1 d*7!
Lq<V2T‘1 - >=0 ™)

which is the last term of equation (3). Note that the
substantial derivative definitions, equations (2), were
used when passing from equation (6) to equation (7).
However, equation (7) is still not yet the desired result
because it does not describe such non-dissipative
phenomena as equations (1) and (3). To take these
phenomena into account we assume—and this is a
crucial assumption for the mathematical technique
used here—that Lagrangian leading to equation (3)
can be obtained from Lagrangian of equation (6) after
multiplying the last one by some temporary unde-
termined function ¢(x, y, z,t) which may depend ex-
clusively on the spatial co-ordinates and time. It means
that we will consider a non-autonomous functional of
the general structure
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dT"! oT"* T ! 0T '
s= Fl&C -
J . dr ox Oy oz .

o

x O(x,y,z,1)dQ  (8)

where dQ = dx dy dz dt and in our case
I /dT7 1\
et @aare - LAV
“[(g” Fraltar ®

Our purpose will be to determine function ¢ such that
equation (3) will be the Euler equation for the func-
tional defined by equations (8) and (9). Since equation
(3)is from its physical nature autonomous (it does not
contain the independent variables explicitly) we must
examine which conditions must be met so that the
Euler equation will not explicitly contain the variables
x,y,z and t. Using again the substantial derivative
definitions, equations (2) it can be verified that the
general form of Euler equation for functional (8) can be
written as

d [ aFe) | oE) | _dFg)

- — + =
dr ] dT’l) Sgl &xg ,}({"T‘ eT!
T oy,

(10)

or after using the differentiation formula for the
product F¢ and then dividing both sides by ¢

d oF 23 ¢ oF ding
R _,_ﬁ.~ + SO —A_TT + _—
de 1<dT ) S ex N(cT ) di
0 o ——
_dr L Oxg
oF s238Ing  OF F
S -
: z(dT-l) +,\; ax, q((”T”) aT ! ah

Equation (11) will not explicitly contain independent
variables x, v, z and t if the function In[ ¢(x, y, z and 1))
will be linear, that is when

¢ =explkgt + k.x + k,y + k.z2) (12)

where k, k. k, and k. are constants which will be
determined after consideration of equations (3}, (9),
(11) and (12).

Using equations (9) and (12) into equation (11) one

obtains

LIvV:T ! — (_jii — k, dll +
‘| 2 dr? ‘el dt
oT™! 6T ! oT 1
kaq *7 k),Lq Ty' kqu ",:‘* = 0 (13)

Hence, after comparing equations (3) and (13) one
finds

2.,
PCoCy

14
3 (14)

k, =

q

and after substituting these relations into equation (12)
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one finds*
¢ = exp(—pe,cotl, ) = explegtD, ). (15)

Thus after using equations (8),(9) and (15) one obtains

the functional
i {d 71 \)‘T
2V dr

Ch

S:‘ ( qur(gradT"):—

l

x exp(— pe,corly NdQ (16)

replacing the functional entropy production. see equa-
tion (4), for the process of pure heat transfer in the
presence of macroscopic motion and relaxation effects.
It may be easy to verify that the Euler equation for this
functional becomes the hyperbolic equation (3) upon
simplification of the exponential terms. One can
additionally note that if the terms containing time
explicitly are disregarded and the solid is at rest (v = 0)
then the functional S simplifies to the functional (4) of
entropy production and equation (3) reduces to the
stationary form equation (5). Thus we have obtained
the correct variational principle, under the same sort of
assumptions as in Prigogine’s theorem [1,4].

It is necessary to remember that as pointed out in
equation (15) the term pc,L; ! in the exponential term
of equation (15) is precisely equal to the negative
reciprocal of heat diffusivity D, defined in usual
manner. It will be of some importance to extend
equation (15) to the case of coupled heat and mass
transfer processes.

3. EQUATIONS DESCRIBING SIMULTANEOUS
HEAT AND MASS TRANSFER

Let us consider an isotropic mixture of n com-
ponents k(k = [,2,...,n) under mechanical equilib-
rium conditions, in which coupled heat and mass
transfer occurs. To make the formulae obtained shor-
ter, let us consider the case of no external forces which
is equivalent to isobaric condition of the process. The
generalization that accounts for the external forces
deriving from potential is self-evident. However for
more complicated situations e.g. in case of Lorentz
forces the generalization of the variational principie
presented here is far from being a trivial matter. The
constant velocity of motion of the system, v, ts defined
in the usual manner as the barycentric velocity [1].
Additionally, the assumption mentioned in Section 1
will be made: namely: the phenomenological coef-
ficients that are elements of Onsager’s matrix as well as
thermostatic coefficients called capacities, being de-
fined below, are taken as constants.

The definition and properties of the capacities result
from the formula for the differential of the specific
entropy of the system:

* It is only for Galillean frames that k, = k, = k, = O and
that the function ¢ is the same in moving and stationary
media e.g. in Lorentz (relativistic} frames k, # k, # k, # 0,
i.e. k; will not vanish, and the scalar product vr will appear in
¢. However we will not consider this problem in detail, see

(8]
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n—1
ds=T"'dh - Y [ — )T 1dye (17)
k=1

and from the formula for a Legendre transformation of
function s determined by equation (17), i.e. from the
relation

n—1

d(u/T) = hdT ™ + Yy d[( — w)T~11.18)
k=1
The capacities are defined as partial derivatives of
enthalpy h and concentrations y, with respect to the
variables T™! and [(g,—m)T '], respectively. In
terms of the capacities the differentials dh and dy; are
described as follows:

n-1

dh = Cqq dT_l - Cax d[(.uk_ﬂn)T_l] (19)
1
n—1

dy; = ¢, d77! - Z i (e — ) T']

1

(20)

It follows from equation (18) that the capacities result
as the second partial derivatives of the function yu,/T
with respect to the variables T~* and (g, — i)/ T, that
is, they obey the symmetry conditions c¢;, = c,, and ¢y
=cy.

Our task will be to find the variational principle
leading to the following system of hyperbolic equa-
tions [8] describing, in Galillean frames, the coupled
heat and mass transfer with macroscopic motion and
relaxation :

dh , a7
=p Tl
0=+ a” Lea (V ctde?

n—1
- Z qu{vz[(ﬂk _”n)Thl]
k=1

&~ u,.)T“‘]}

21
ci di? 1)

dy, &7
0=p24 Liq<V2T‘1 ——>

de cde?

n—1

- Z Lik{vz[(ﬂk - #n)T_lj
k=1
_ dz[(“k - :un)T_l}

c§ de? @2)

For the system at rest these equations contain
d’Alamberts operators replacing the commonly used
Laplace operators because relaxation phenomena are
not neglected in our description. In equations (21) and
(22) as well as in further analysis it is assumed that the
velocity of wave propagation, ¢y, is a constant inde-
pendent of time and location in the system.

For the purpose of operating with a definite set of
mutually independent variables the enthalpy and
concentration differentials should be expressed in
terms of differentials of the transfer potentials, T~ 1,
[y — u,) T™1],...etc. Using equations (19) and (20)
in equations (21) and (22) one can obtain:

HM.T. 23/9—8
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dT—l n—1 d
P{C—— = 2 Ca[(& —un)T“‘]}
{"" dr ,(; *dr B
n—1
+ quVZT_l - Z quvz[(ﬂk - “n)T_l]
k=1
L T Lo Al =TT
2 d? o cd de
{ 4Tt g Al —un)T‘l]} )
PG - Cx =
“ar e d
n—1
+ LquZT_l - z Likvz[(#k - ﬂu)T-l]
k=1
Liq dZT_l & dz[(ﬂk - un)T_l] =0 (24)
¢z d? 3 de? S

The two symmetric matrices are associated with
equations (23) and (24), namely the positive defined
matrix of Onsager

_L'lq qu L‘Iv"_l
L- Ly, Ly, Liw- (25)
LLn—l.q Ln—l,l Ln—l.n-—l
and the ‘thermostatic’ matrix of capacities
C= C1q €11 Cin-1 (26)
_Cn-l,q Ca-1.1 Cn—1,n-1

One may note that the elements of matrix C are
precisely those which appear in fluctuation theory for
quadratic approximation of the entropy excess AS,,,
of a large closed non-equilibrium system having a
uniform temperature T, and chemical potentials p,,
nearly everywhere except for the unit mass part where
the temperature is T and chemical potentials are y,.
Indeed, one has in our isobaric case

n—1

Ah
ASig = AS — N + Y (ko — tn0) TG ' Ay,
0 k=t

n—1

= %{AT” Ah — 3 Al(w — )T~ ]Ay,

k=1
@7

after Taylor expansion of As with accuracy to the
second order terms. Equivalently

AS!otal = %{qu(AT— 1)2

n—1

-2 Z ch AT—IA[(.uk'—ﬂn)T—l]
k=1

n-1n-1

+ Z Z Ci AL(y, — 1) T71]

i=1 k=1

% Al — ﬂ,.)T“]}- (28)
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This expression is a consequence of the local equilib-
rium hypothesis of isobaric macroscopic system, see
[1,4]. For a stable system C is a negative definite
matrix at least in close to equilibrium situations.
However the nature of the transfer equations which
mnvolve relaxation terms indicates that the system can
be far from equilibrium and, then, it can be questioned
if Cis always negative. Although C {or its reverse) was
taken in [4] to be always negative it should be
underlined that this negativity condition is not nec-
essary for our purposes. Namely, the construction of
the variational principle can be accomplished also
when C is not of definite sign. It will be shown that the
only requirement is that at least one of the two
matrices, L or C, has to be of definite sign.

4. AN EIGENYALUE PROBLEM SIMPLIFYING THE
FINDING OF VARIATIONAL PRINCIPLE

We shall show by extension of reasoning presented
in Section 2, that the variational principle exists
leading to equations (23) and (24). At first glance,
however, it seems to be extremely difficult to formulate
such a principle because of the complexity of the
process equations. Some introductory search is there-
fore required, this is presented in this section.

The basic concept of the present technique will
exploit the notion that the finding of variational
formulation will be much more easy if the set of
equations {23) and (24) is broken down to the equiva-
lent uncoupled set of equations operating with new
transfer potentials for which both symmetric matrices
C and L will become simultaneously diagonal. Al-
though it is commonly known that any symmetric
quadratic matrix can be broken down to the diagonal
form by orthogonal transformations it is not in-
tuitively obvious that the transformation exists which
makes two, symmetric matrices both diagonal.

In analytical dynamics theory, of [13], and es-
pecially in the theory of vibrations this fact is, however,
well known since it is connected with the transfor-
mation of the non-Cartesian form of kinetic energy
matrix and potential energy matrix to the two dia-
gonal matrices simultaneously after introducing so
called normal (or principal) co-ordinates. It is always
possible to accomplish it if at last one of the two
matrices considered is of definite sign [13]. It is also
known that in such a case the transformation which
leads to normal co-ordinates is always a real one
113, 14} for the two non-singular symmetric matrices.

Now we will apply the above concept to transform
equations (23) and (24) an equivalent form* from
which the variational principle will result immediately,
on the basis of the variational results of Section 2. Let
us suppose that we have multiplied each of relations,
equations {23) and (24) by some temporary unde-
termined multipliers mg, my, ..., m,_; and then we
added the resulting equations together. The equation

* This form will be uncoupled with respect to the new
dependent variables, i.e. potentials P, defined later.
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obtained is:

a7’
0= plegMo + Cyyy + Gy + Cum g My y) =

+ plegimy + oMy + G My G g )

o ALt =)/ Tl

a@ + p(Cqn— 1My + Crpo My

4~ tu-1)/T]
dt

F e G My Cpmtpmy M)

+ (Lo + Lygmy + o Ly Ly my_y)

x | V3T — gii
. cgdi

F(Lymg + Lyymy + Ly + Loy my g

y Vz(ﬂn-m)_dz(ﬂn—m)ﬂ"
T c§ dr?

+ ot oMo + Lyyoymy

x ”‘L‘kn-* 1 + Ln*in—-lfnnvlr}

w VZ (Nn a2 1) - dz[(ou'n—' /ln‘w 1 )//T]
LT ch dt? i

where, for brevity, the substantial derivative operators
d/dt and d?/di? are again introduced. Considering
sequentially the coefficients of the terms containing
a7t VT 1 4T
dr - ¢t dr?

(29)

then the terms containing

i LV (un—#x) )T
dt | T cé dt?

etc. one can observe that the equation (29) will take the
simple ‘canonical’ form
1 d*p

ap (
- DIVip — -
P TP a3 ar

) =0 (30)

where

1 1 n— Hn-
pea(i g ) vl (")

+‘“an_l[<#n"—;‘n—l\)_(ﬂn"‘;n~l>a] (31)

and [the symmetry of matrices has been exploited in
equations (32) and (33)]

Ay = CoqMo + Cqathy + - Cty + o Capm gy
Gy = CygMo + CpMy . CppMy + Cppe 1 Mn— g

Up_q = Cpoy oMo + CpeqaMy--»

(32

Cpep.afMp -« - [ e LB ]

only when a constant D exists, appearing in equations
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(30) and (33), that the multipliers mg, m;, ...
meet the equations

s Myoqs

Ly + Lygmy + . Lgmy + .. Loy ymy .y

—pDegmo + ¢y - Cumy + Copm My y)

Ligmg+ Lyymy + .. Ly + .. Lyp 1My

= —pD(cy Mo + C1ymy + .. Coy + CrpmyMyy)

Loy mo+ Lyoy ymy + . Ly g ...
F Lyt -y
= —pD(c,- 1Mo + Cp-11My
(33)

+Cpm g 1M+ Ca g e 1 Mg )-
The quantity P obeying equations (30) and (31) is
expressed in terms of the excesses of original transfer
potentials, with regard to arbitrary reference state, as
¢.g. constant state at infinity, P will be called normal
transfer potential, since, as it will be shown later, nsuch
independent potentials P will exist each of which obey
the simple separable structure of equation (30). We will
not characterize the potential P extensively since they
have in our analysis only temporary, significance, and
we will return finally to original potentials 1/T,
—-m)/T ... etc
Equations (33) will be consistent only then if the
constant D having the dimension of diffusivity, is the
root of the characteristic equation:

det(L + DpC) = (34)

This is the so called general Eigenvalue problem for the
pencil of matrices L and ( — pC) known inalgebra[14].
The roots of equation (34) DyD,...D,_, are Eigen-
values or characteristic roots of the pencxl of matrices
mentioned. Since matrices L. and (—pC) are both
symmetric, the characteristic roots, i.e. quantities D,
D,,...,D,_,,arealireal numbers which are all positive
when C<O and L>0, see [14,13].

Because of these properties of the roots, Dy, Dy, ...,
D, _,, and their dimensions of diffusivity we will term
them as ‘Eigendiffusivities’. The most important physi-
cal property of the Eigendiffusivities Dy, ..., D,_,
results from the invariancy of characteristic equation
(34). Any non-singular linear transformation of the
original transfer potentials, described by the inde-
pendent equations each of the type of equation (31),
transforms the set, equations (23) and (24), into the
new set with new coefficients which are the elements of
the new matrices L, and C,. For these new matrices
the characteristic equation

det(L; + DpC,)=10 (35)

has the same characteristic roots as equation (34).
Thus, the Eigendiffusivities are physical quantities
independent of thermodynamic variables used in pro-
cess description.

For the special case of pure heat transfer equation
(34) reduces to
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L,+ D,pc, =0

or since ¢, = —C,T§ and LT} =k,
conductivity, to

(36)

, the thermal

= LN 37
eC,
in agreement with the common definition of heat
diffusivity.

After solving equation (34) the Eigendiffusivities D,
Dy,...,D,_, become known. For any value of D;, i=0,
1,...,n—1, onecan now determine numerical values of
coefficients mb, m}, ..., m,_, and ab, a},...,al_, from
equations (33) and (32), respectively, provided that for
each index i (i=0, 1, —1) there is defined one
additional equation mterconnectmg mh,mi,...,mi_,
which is called the normalizing condition. The reason
for normalization is that equation (33) is homo-
geneous with respect to m,, ..., my and without
normalization only ratios between coefficients m, ...,
mi, mi_, would be determined. (Without normali-
zation, the quantities ab, ai, ..., a’_, and P would be
determined with the accuracy to the constant multi-
pliers only.)

Normalization makes n solutions of equation (33}
synonymous for mj, ..., mi_, and consequently de-
fines synonymously n normal potentials P' each of
them obeying equation (30). Note that normalization
does not influence the values of Eigendiffusivities D,.

Although normalization is only a mathematical
procedure, and it may be accomplished in many ways,
it is useful to normalize coefficients my, ..., mj_,, In
some special manner. Here the normahzation is 5O
accomphshed that the n column vectors m’ = col(m),
mi, ..., mi_,) obey n relations of the form:

m)y’Cm' = —1; i=0,1,....n—1.  (38)

Since the vectors m‘ and m’ for two different Eigen-
values D; # D;are orthogonal with respect to each of
the two matrices (—pC) and L, [14], ie.

(m)Cn’ = (') e = 05 i) (39)

then, after use of normal transfer potentials and
normalization the matrix, C transforms into a negative
unitary matrix, diag (—1, —1, —~1, ..., —1), and the
matrix L into diagonal matrix, diag (pD,, pD,, pD,,
.., pD,_). This results from the basic properties of
the general Eigenvalue problem [ 14] as outlined in the
Appendix.

Solving the set of equations each the type of
equation (33), n times, for D= Dy, D=D,, ..., D
= D, _, with the use of » normalization conditions,*
equation (38), we obtain the definite set of vectors m’
with the co-ordinates mj, mi, ..., mi_,. Then, the
coefficients aj, ai, ..., a’_, of the equation (31) are

n-1
* An equivalent normalization condition — Z P =

o
Q7CQ might be used where Q = col(AT"!, Ay, —
#)T™1..). Itis indicated by equation (A.6) in the Appendix.
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found using equation (32}, or equivalently, the matrix
formula:

at=Cm' {40}

where a = col(dg, ¢y .., dy_y)-

Thus we know the coefficients of equation (31) for D
= D,, and we can write n independent definitions for P!
(i=0, 1, ..., n—1). Using these definitions in the n
canonical equations [equation (30) for D = D, and P
= P} we have transformed the set of n original
relationships, equations (23) and (24), into the equiva-
lent set of n following equations,

-1 -1

- p{aeoifi 4t L = )T

dr dt
-d - T 17
+...a4 ——[A(&'—wai?‘)w ]
i d (;un - My )Tvl
s e dr 1 ]ﬁl

+pDab VAT + @ VA, — p )T Y]
+ oV — )T

i 2 g Di
oty VI~ )T = p 3

T
AT 4, — -4
x {al e L al - B@L_ﬁ"«)i }.
d dr?
d?‘[(Un - /‘n—l)Tﬁl]} =0
B
dr* |
i=01....n—1 {41}

each having the simple structure of equation {(30).
From this structure it will be very easy to formulate the
variational principle on the basis of the results of
Section 2.

5. THE VARIATIONAL PRINCIPLE FOR COUPLED
HEAT AND MASS TRANSFER PROCESSES

Comparison of equations (3), (16) and (30) verifies the
relevant functional for the processes of simultaneous
heat and mass transfer described by normal potentials
PO pt Pt

(1 (o521

since the condition 6S = 0 leads to the set of re-
lationships given by equation (30) for P = P°, P', .,
P! Returning now in integral (42) to the original
transfer potentials, T, (i, — 4,)T ', etc. we obtain
with the help of equation (31) for P = P and a, = aj,
the following functional:

NIEHEHES
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ax, )

L dT7! Cdf (py — 1

~ -5(“6"’" td [ d?i)"' i

o\

o Al — )TN
“““"“‘""'Ti}’i" H \

ot
X exp [(;;- D dQ

the stationarity conditions of which are equation (41)
or equations {23) and (24) for the transfer potentials
constant at the boundaries of Q.

All coefficients of this functional, ie. ¢} and D; of
equations (40) and (34) respectively, are known as they
were obtained* from the elements of the two basic
thermodynamic matrices, the thermostatic matrix C,
equation (26), and the kinetic {Onsager’s} matrix,
equation (25). Thus we have obtained a well-defined
classical functional leading to the set of equations
describing non-stationary, coupled processes of energy
and mass transfer.

o, -
o, a;- . i

{43)

6. DISCUSSION

If in the integral, equation {43), the terms with time
derivatives and the exponential terms are disregarded,
i.e. if the non-stationarity and convection effects are
neglected, then in view of relations, equation (31) and
equation {A.5), in the Appendix, the product of the
total entropy source and the constant time interval Ar
is obtained. The total entropy produced is then
represented by S and the stationarity conditions, 85
= (), leads in such a case to the conclusion that, at the
steady-state, the real spatial distribution of the transfer
potential gradients makes the entropy source both
stationary and minimal [1,4]. Euler’s equations are
then the classical equations of change taken for time-
independent processes without convection. For that
reason the stationarity principle 65 = O for the func-
tional S defined by equation (43} replaces the
Prigogine’s variational principle of thé minimum
entropy source? in those cases when the time-
dependent heat and mass transfer occurs in which all
three transport mechanisms, viz. by convection, dif-
fusion and relaxation are of importance. It should be
emphasized that the result obtained does not lead to
the conclusion about the minimum of entropy source
in the non-stationary processes considered.

* Remember that, in general, there is no explicit formula
for the solution of every Eigenvalue problem. It is, however,
possible to compute coefficients a} and D in any concerete
case in the manner described in Section 4.

+ We consider here only the exact variational formulation
exploiting the entropy production functional in stationary
case and no other extremum formulations {related to this
case) that can also be found in [4].
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The principle of stationarity of functional § pos-
sesses all the advantages and shortcomings of
Prigogine’s variational principle. This is a general
principle which accounts for the effects of all the
transport mechanisms. On the other hand the prin-
ciple is valid when ever the assumption of the con-
stancy of macroscopic coefficients applies.

From the view point of heat and mass transfer
specialists the practical usefulness of the variational
principle given consists in finding approximate fields
of temperature and chemical potentials (concentration
fields can then be found) with the help of direct
variational methods. As usual it is then assumed, that
the solution T™Y(x, y,2,t),..., (g, — 11 )/ T {x,y,2, t) etc.
of the set of hyperbolic equations {23) and (24) may be
represented everywhere by complete and linearly
independent sets of functions*  @%(x,y,2,1),
hi(x,v,2,1), ... etc. We write

P

T = Y 6¢5r(xy210);
=1
14

Z o ®ulx, y,2,t),... etc
=]

uT ' = 44)
where the {d;}, {oz1},. .. are the nset of parameters. We
then introduce the approximations, equation (44), into
the functional (43) and perform its minimization with
respect to the parameters as in the Rayleigh—Ritz
method {11,12]. We obtain in this way the optimal
values of parameters leading to approximate ex-
pression for transfer potentials. The practical details of
the above aspect of application will be the subject of a
separate paper, where a computational sample of
coefficients D;, a} and m} will also be given

7. CONCLUSION AND SIGNIFICANCE

Variational principles of a classical type known
previously for macroscopic systems are valid separately
for either reversible or irreversible phenomena [1,3].
For instant, the recognized least action principle [3]
pertained to the first and the minimum entropy
production principle, [1], to the second type of these
phenomena. No classical type principles have been
given for macroscopic processes in which the irrever-
sible phenomena were accompanied by the reversible
ones. Since in our real macroscopic world such parti-
cular processes generally prevail, the practical value of
the principles mentioned previously was restricted and
non-classical approaches as in the local potential
method [4] have been advanced.

In this work a powerful method has been given for
finding variational principles of classical type which
apply to macroscopic processes with reversible and
irreversible phenomena. This method leads to time-
unsymmetrical and position-unsymmetrical Euler
equations, due to the presence of non-autonomous
exponential terms in the Lagrangian’s of the func-

* Each of which satisfies separately the boundary
conditions.
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tionals, equations (16) and (43). Such equations
conserve the fundamental irreversibility property, na-
mely; the change in time sign or spatial co-ordinate
sign does not lead to unchanged process picture, this is
not so in the reversible process case.

To explain it more clearly let us consider the most
simple example of the irreversible process when a solid
sphere with mass m, and diameter d falls vertically in
quiescent viscous gas and the motion is laminar. It is
sufficient to consider here this simple problem and we
refer the reader to the previous work [15] for a more
detailed analysis and generalizasions. In the gas case
the buoyancy and virtual mass effects can be neglected
and the suitable functional is of the form:

i’
5=
0

since the condition 4S = 0 leads to the wellknown
equation of motion

3ndjit

my(z* —gzjexp < )dt {45)

s

mZ + 3rjadi + myg =0 (46)

containing the Stokes expression for viscous force. The
functional, equation (45), as well as the trajectory z(t)
of equation (46) change with transformation t — —¢
because of the presence of the exponential term in
equation {45) resulting in appearance of the Stokes
term in equation (46). If, however, the viscosity ji of the
fluid approaches zero then the exponential term of
equation (45) approaches unity and the functional S
reduces to the well-known least action functional [3].
Consequently the Stokes term in equation (46) van-
ishes and the trajectory of this equation does not
change with t — —1 as a trajectory of a microscopic
world process. An analogue analysis is valid for the
more complicated functionals (16) and (43) in Sections
1 and 6. Thus, due to the presence of exponential term
in the integrands of equations (16), (43) and (45) the
variational principles were found for more general
processes in which irreversible phenomena are accom-
panied by reversible ones. The existence of the classical
variational principles for such processes is of consider-
able theoretical importance for the fundamentals of
irreversible thermodynamics and transport pheno-
mena sciences.

From the view point of the heat and mass transfer
specialists the practical value of this work should also
be underlined. The functionals found make it possible
to obtain the solutions of the transport equations by
direct variational methods [11] with considerable
accuracy, even in the case of complex boundary

conditions (see e.g. Section 6 and numerical examples
in |5 and 7).
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APPENDIX

THE DIAGONALIZATION OF MATRICES AND
QUADRATIC FORMS IN NORMAL COORDINATES /!
Introducing vectors Q = col(T™' — Tg' (u, — u)T71
— Ay = )T VP = col(P°, P!, ..., P"7 1) and matrix
M = [m",m’,...,m"" "] the column of which are the vectors

m' one can write equations (38) and (39) in a common form
MCM = —E = diag(— 1.~ 1., ~ 1 (A1}

where E is unitary matrix. Also, since m" are solations of

equation (33) one has Lm’ = —D,pCm’ and
(m') L’ = Dm")"(— pC)m’

for i,=0,1L....a—~L {A)

Hence, from the definition of M and using equations (A.1)and
(A2)

MTLM = pD = diag{pDo.pD,.....2D,. ;). (A3}

One may see, that our ortonormality conditions, equations
(38) and (39) in the text, resulted in simultaneous transfor-

StaNISLAW SIENIUTYC Z

mation of the two symmetric matrices C and L into the
diagonal matrices, diag(~1, —1,. .. -} and diag(pD,.
pD. ... pD,_), respectively. We shall show that it s
associated with a diagonal form of the entropy production
expressed in terms of potentials P’ und also with the
diagonalization of other quadratic forms of interest. Indeed,
for the transformations Q — P, we have, from equations (31}
and (32 for i=0, .. .n—1 and from equation (A 1} for
symmetric €

P=(CM)'Q=MCQ = M 'Q. (A4
Hence Q = -~ MP and since M is independent of time and

position and equation (A.3) holds. the local entropy pro-
duction writfen as

Vo

transforms as follows

EEOL (i)

i
ex, !

RECEEN ERY T

ST

R A S

{A Sy

By the same reasoning with the help of equation (A.1} one has

Q7CQ = (-~MPY'C(~MP)

nod

= -PP= - ¥ (P} (A6}
Also
. . nol .
QCQ= - Y (P (AT}

Similarly for some four-dimensional counterpart of entropy
production, i.e. for generalization of the integrand of equation
(61 in the multipotential case we have

R

[ Xy [T
nel i AP L
= Y <pDl(grad P’y ~ St (A8
Lol merr (T G e

We may see that basic bilinear forms appearnng in this work
diagonalize in the normal co-ordinates P! This conclusion
applied to the local entropy production bilinear form,
equation (A.5), is used in Section 6 to show that the
variational principle advanced here reduces to the minimum
entropy production principle for the stationary case of the
system at rest.

It may be also noted that the coefficients «} appearing in
our functional, equation (43), are elements of the matrix
{CM)". Since {CM)" equals to M7, ¢f. equation (A1), the
principal matrix of the Eigenvalue problem, M, is the only
guantity that is necessary to find the coefficients .
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LE PRINCIPE VARIATIONNEL REMPLACANT LE PRINCIPE DE
PRODUCTION MINIMALE D’ENTROPIE POUR UN PROCESSUS
INSTATIONNAIRE DE TRANSFERT DE CHALEUR ET DE MASSE AVEC
MOUVEMENT CONVECTIF ET RELAXATION

Résumé—On sait [1] que le théoréme variationnel de la production minimale d’entropie ne s’applique pas
aux mécanismes instationnaires en présence ou non de convection. Dans de tels cas une nouvelle
fonctionnelle thermodynamique du type de Hamilton remplace la fonctionnelle de production d’entropie.
Les conditions de stationnarité de cette fonctionnelie sont les équations hyperboliques du transport couplé
d’énergie et de masse qui prennent en compte les effets de non stationnarité et de mouvement macroscopique
en équilibre mécanique.

La conséquence pratique du principe variationnel donné est de trouver des champs approchés de

température et de concentration a l'aide des méthodes variationnelles directes.

ERSATZ DES PRINZIPS DER MINIMALEN ENTROPIEZUNAHME DURCH
DAS VARIATIONSPRINZIP BEI GEKOPPELTEM- INSTATIONAREN
WARME- UND STOFFUBERGANG MIT KONVEKTIVER BEWEGUNG UND
RELAXATION

Zusammenfassung—Fs ist bekannt [ 1], daB das Variationstheorem der minimalen Entropiezunahme nicht
fiir instationire Prozesse und/oder bei Auftreten von Konvektion angewendet werden kann. Fiir derartige
Prozesse wird in dieser Arbeit ein neues thermodynamisches Funktional vom Hamilton-Typ angegeben, das
das Funktional der Entropiezunahme ersetzt. Im stationdiren Fall hat das Funktional die Form der
hyperbolischen Gleichungen fiir gekoppelten Energie- und Massentransport, welche die Eifekte der
instationidren und makroskopischen Bewegung bei mechanischem Gleichgewicht beriicksichtigen. Die
praktische Bedeutung des angegebenen Variationsprinzips besteht darin, mittels direkter Variationsmetho-
den Niherungslosungen fiir Temperatur- und Konzentrationsverteilung ermitteln zu kdnnen.

HCIMOJIB3OBAHHE BAPHALJMOHHOI'O IMPUHLIMIIA BMECTO IMPHHLHIA
MHUHUMANBHOIO NMPUPOCTA SHTPONMHUH 1A CBA3AHHBIX HECTALUMOHAPHBIX
NPOLIECCOB TEMJIO- U MACCONEPEHOCA TPH KOHBEKIIMH M PEJIAKCALIMH

AHROTanms — XOpOUIO M3BECTHO, YTO BADHAHOHHYIO TEOPEMY O MMHHMAJBHOM DPOH3BOACTBE
IHTPORHY HEJIb3% HCRONB3OBATH [UIA ONHCAHHA HECTAHHOHADHBIX MPOUECCOB, CCITH K TOMY XK€ HMEET
MecTo KouBekuus. JInsn TakHX npoueccos BMECTO (YHKIHOHANA NPOMIBOACTBA HTPONHM B NaHHOH
paboTe mpeIaracTCA HOBBIH TEPMONMHAMMHYECKHI! GYHKIIHOHAN TaMWIBTOHOBCKOIO THINA, CTALMOHAP-
HBIMH YCJIOBHAMM JUIS KOTOPOTO SBJAIOTCA HNEpOOIHYECKHE YPABHEHHA B3aHMOCBA3aHHOIO EPEHOC
IHEPTHM M MACCHI, YYHTBIBaoIHe 3PHEKThI HECTAHOHAPHOCTH M MAKPOCKONMYECKOTO JBHXEHHA [PH
MEXaHHYECKOM PABHOBECHH.

MpakTHyeckas 3HAYHMOCTD NPEANaracMoro BapHAUHOHHOIO NPHHHHNA 3aKIIOYAETCY B BOIMOX-
HOCTH HAXOXJCHHA MPHOIDKCHHLIX TEMNEPATYPHBIX M KOHUEHTPaLMOHHBIX 110/l NPAMBIMH BapHa-

UHOHHBIMH METOIAMH.
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